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Abstract We study the joint distribution of the number of occurrences of members of
a collection of nonoverlapping motifs in digital data.We deal with finite and countably
infinite collections. For infinite collections, the setting requires that we be very explicit
about the specification of the underlying measure-theoretic formulation. We show that
(under appropriate normalization) for such a collection, any linear combination of the
number of occurrences of each of the motifs in the data has a limiting normal distribu-
tion. In many instances, this can be interpreted in terms of the number of occurrences
of individual motifs: They have a multivariate normal distribution. The methods of
proof include combinatorics on words, integral transforms, and poissonization.
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1 Introduction

With all types of data and their supporting storage, one is often interested in substruc-
tures. In a text, we are interested in the occurrence of certain words, such as cancerous
genes in DNA strands. When digital data are stored in digital trees, we wish to identify
the occurrence of certain tree shapes, whichwe callmotifs. Certainmotifsmay indicate
particular properties of the digital records stored, such as the prevalence of a certain
disease in DNA data. Often, the presence of a particular substructure is significant in
the presence of certain other structures, such as the alleles of cancer, which become
more serious in the presence of certain other alleles. So, we are interested in the joint
occurrence of members of a collection of shapes in a given tree. There can also be
applications in data compression. When a certain small tree shape occurs multiple
times in a large tree, we can store the data in these smaller trees using a simpler for-
mat, with only one pointer in each structure to their common tree shape. This allows
us to store only one actual copy of each subtree shape.

We consider m-ary tries, which are trees arising from random strings over an m-
ary alphabet. The trie was introduced in [1,10] for information retrieval. In addition
to their use as data structures, tries support the operation of—and serve as models
for—the analysis of several important algorithms, such as radix exchange sort [19],
and extendible hashing [3].

We assume that our digital data are infinite strings written using the symbols of an
m-ary alphabet

A = {a1, . . . , am}.

In the sequel, A∗ will denote the set of all finite-length words using letters from A.
Each string is generated independently of all others by a probabilistic memoryless
source, i.e., the successive symbols of one string are generated independently, and
the probability of the source emitting the symbol a j ∈ A is P(a j ) = p j . To avoid
trivialities, we assume p j > 0 for j = 1, . . . ,m.

Tries are a form of digital tree. They have a recursive definition. An m-ary trie
on n strings is empty, when n = 0. Nonempty tries on n ≥ 1 strings have two
types of nodes: internal (which serve the purpose of branching) and external (each of
which contains one string). Each internal node has m subtrees (some may be empty),
corresponding to the symbols a1, . . . , am (respectively, from left to right). An m-ary
trie on n = 1 strings holds one string; the trie consists of an external node carrying
that string. An m-ary trie on n > 1 strings consists of a root node of the internal type,
and m subtrees, which are themselves m-ary tries. All the strings starting with a j go
into the j th subtree. The recursion continues in the subtrees, with branching from the
�th to (� + 1)st level according to the (� + 1)st symbol in the strings. Henceforth, we
shall let the “m” be implicitly understood and often call an m-ary trie simply a trie.
The number of strings in a trie is its size.
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S1 = CATCTGGTA . . .

S2 = AATACTTCG . . .

S3 = TGCCGAATC . . .

S4 = TTTGTTCTA . . .

S5 = AAGATGGAA . . .

S6 = GCAAATCTG . . .

S7 = GCTCTGGTA . . .

S8 = AAACTGGTA . . .

S9 = TGGTACCCG . . .

S10 = GCATCTGGT . . .

S11 = ATGTCTGGT . . .

S12 = GCAGTGGTA . . .

S8 S5 S2

S11

S1

S6 S12 S10

S7 S3 S9

S4

Fig. 1 Example of a quaternary trie of size 12 for DNA data

Fig. 2 Two nonoverlapping DNA motifs of size 4. The motif on the left occurs twice in Fig. 1; their
roots are the parents of S7 and S11. The motif on the left corresponds to the collection of strings
{AA . . .,AG . . .,AT . . .,T . . .}. The second motif does not occur in Fig. 1. The second motif corresponds to
the collection of strings {A . . .,GC . . .,GG . . .,T . . .}

Figure 1 instantiates the definition of tries with a quaternary trie, of size 12,
constructed from twelve DNA strands, where the alphabet is the set of nucleotides
{A,C,G,T}. The 12 strings in the external nodes are given in Fig. 1.

The rest of this paper is organized as follows. In Sect. 2, we lay out the general
setup and the scope of the investigation. In Sect. 3, we present the main results. In
Sect. 4, we give the measure-theory formulation by giving a probability space on
which all the random variables in the paper are formally defined. In Sect. 5, we take
up poissonization. In Sect. 6, we present proofs. The proofs are structured in following
sections: Sect. 6.1 is for the derivation of the mean; Section 6.2 is for the derivation
of the variance and is followed by several subsections dealing with technical details:
Mellin transform and some motivating words about this tool (Sect. 6.3), its existence
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domain (Sect. 6.4), variance asymptotics (Sect. 6.5), and the covariance structure
(Sect. 6.6). The moment-generating function of the univariate linear combination is
dealt with in Sect. 6.7, where a recurrence is given. In Sect. 6.8, we derive a Gaussian
limit for the distributionof the combinedoccurrences of an arbitrary linear combination
of motifs, which we then discuss in examples in Sect. 7 (writing one subsection for
each example).

A similar investigation has been carried out in [14] on recursive trees, but it required
a rather different set of probabilistic tools. There are many other examples in the
literature about pattern counting in other random tree structures. We mention only a
few here. Flajolet et al. [8] investigated subtrees on the fringe of the binary search tree,
of a certain size but not a certain shape. Fill [5] also has studied a distribution on the
set of binary search trees, in the context of a random permutation model. In addition
to identifying patterns in trees, a recent paper by Gopaladesikan et al. [15] considers
missing patterns in trees. It would be impractical to give a full survey of the myriad
papers that have results about patterns in random trees.

2 Technical Development

We assume that a (random) m-ary trie is built from n random strings. For a given
motif (trie shape) T , let Xn,T count the number of occurrences of T on the fringe of a
random trie of size n. By occurrence on the fringe, we mean that T coincides in shape
with a maximal rooted subtree of the trie, in the sense that the subtree does not contain
a subtree with more nodes than in T .

When the motif T is the trie on the left-hand side of Fig. 2, there are X12,T = 2
occurrences of it in the trie of Fig. 1. When the motif ˜T is the trie on the right-hand
side of Fig. 2, there are X12,˜T = 0 occurrences of it in the trie of Fig. 1. The roots
of the two occurrences of T are the parents of S7 and S11. In all figures in this paper,
empty subtrees are shown as dashed external nodes, connected to their parents via
dashed edges.

Let I be an indexing set, of cardinality at most ℵ0. Let

C = {Tν | ν ∈ I}

be a given collection of motifs. We say that two motifs are nonoverlapping, if neither
appears as a subtree in another, and we call a collection of motifs a collection of
nonoverlapping motifs, if its members are pairwise nonoverlapping. For instance,
neither of the two motifs in Fig. 2 appears as a subtree of the other, so this is a
collection of two nonoverlapping motifs.

In many applications, such a collection will be finite, but our presentation covers
cases of countably infinite collections, too. Countably infinite nonoverlapping collec-
tions arise naturally in many applications, such as the case discussed in the following
example.

Example 1 In [21], the average of the number of “τ -cousins,” which are any tries of
size τ on the fringe of a random trie, was found. In the notation of the present paper,
if C denotes the collection of all motifs corresponding to τ -cousins, then the number
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of τ -cousins in a trie is
∑

Tν∈C Xn,Tν . In particular, we note that there is a countably
infinite number of τ -cousins. Thus, we can use an indexing set I that is in one-to-one
correspondence with the positive natural numbers N.

A trie is basically a correspondence between a set of strings and a tree structure. For
n ≥ 2, if (W1, . . . ,Wn) is an ordered n-tuple ofwords of finite length (i.e.,Wj ∈ A≥1),
we say that (W1, . . . ,Wn) has the trie property if, for each i : (1) Wi is not a prefix
of any of the other Wj ’s, and (2) if the last character of Wi is removed, it becomes
a prefix of at least one of the other Wj ’s. (In the case n = 1, this must have simply
W1 = ε, namely the empty word has the trie property.)

A trie with n leaves always uniquely corresponds to a set of n strings with the trie
property. For example, the 12-tuple of strings that induces the trie displayed in Fig. 1
is:

(W1, . . . ,W12)=(C,AAT,TGC,TT,AAG,GCAA,GCT,AAA,TGG,GCAT,AT,GCAG).

In our results, we will utilize the data entropy function

h = h(p1, . . . , pm) = −
m
∑

j=1

p j ln p j .

Also, we use Q(T ) to denote the probability that a trie grown on τ random strings
coincides with a given fixed motif T of size τ . Some authors call such a probability a
shape functional. See [2,5,6] for counterpart definitions inm-ary search trees, and [4]
for the counterpart in recursive trees. These two classes of trees require probabilistic
tools that are rather different from the analytic probability tools utilized in this paper
for digital trees.

Remark 1 Consider a trie grown from the τ strings

S j = a j,1a j,2 . . . a j,L j . . . , for j = 1, . . . , τ,

where L j denotes the length of the shortest prefix that uniquely identifies S j among
S1, . . . , Sτ . The same trie shape (motif) T arises, regardless of the τ ! possible orderings
of insertion of these τ strings, so the leaves are labeled with S1, . . . , Sτ . The motif T
has shape functional

Q(T ) = τ !
τ
∏

j=1

L j
∏

s=1

P(a j,s).

3 Results

The main results, in terms of averages and covariances, are given next.
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Proposition 1 Let Xn,T be the number of occurrences of a fixed motif T of size τ

in an m-ary trie constructed over n independent strings from an m-ary alphabet
{a1, . . . , am}, with probabilities p j > 0, for j = 1, . . . ,m. We then have

E[Xn,T ] = Q(T )

τ (τ − 1)h
n + ξT (n)n + o(n),

where ξT is a possibly fluctuating function with average value zero.

We note that ξT usually has small magnitude in many specific cases, when the proba-
bilities (p1, . . . , pm) are periodic1 (as an example, the magnitude can be of the order
10−5 for some specific values of the pi ’s), and is 0, otherwise. (We do not claim,
however, that any uniform small bound exists, which covers all (p1, . . . , pm).)

Remark 2 The average in Proposition 1 is the same as the average number of τ -cousins
in [21], except for the factor Q(T ). This is, of course, to be expected, as τ -cousins
can come in various shapes (all being tries of size τ ), and the expected number of
occurrences of a given shape is the same as the average number of cousins, ramified
by the shape functional, which is the probability of picking the shape in question.

Theorem 1 Let Xn,T be the number of occurrences of a fixedmotif T of size τ in anm-
ary trie constructed over n independent strings from an m-ary alphabet {a1, . . . , am},
with probabilities p j > 0, for j = 1, . . . ,m. Then, we have

Var[Xn,T ] =
[

Q(T )

τ (τ − 1)h
− 2Q2(T )

h

(

2−2τ

2τ(2τ − 1)

(

2τ

τ

)

+ 1

(τ !)2
∞
∑

j=0

(−1) j
∑m

k=1 p
j+τ
k

1 −∑m
k=1 p

j+τ
k

× ( j + 2τ − 2)!
j !

)

+ δT (n) −
( Q(T )

τ (τ − 1)h
+̂δT (n)

)2
]

n + o(n).

whereQ(T ) is the shape functional of T , and δT (·) and̂δT (·) are possibly fluctuating
with average value zero, when the probability set is aperiodic and is 0 otherwise.2

1 A set of probabilities p1, . . . , pm is said to be periodic, when log p j / log pk is rational, for every 1 ≤
j, k ≤ m.
2 In the aperiodic case, the o(n) estimate can be improved to O(n1−ε), for some 0 < ε < 1.

123



J Theor Probab (2017) 30:1225–1254 1231

Furthermore, if T and ˜T are two nonoverlapping shapes of sizes τ and τ̃ (where τ

and τ̃ are not necessarily the same), we have the covariance

Cov[Xn,T , Xn,˜T ] =
[

− 2Q(T )Q(˜T )

τ ! τ̃ ! h
(

2−τ−τ̃ (τ + τ̃ − 2)!

+2−1
∞
∑

j=0

(−1) j
(

∑m
k=1 p

τ+ j
k

1 −∑m
k=1 p

τ+ j
k

+
∑m

k=1 p
τ̃+ j
k

1 −∑m
k=1 p

τ̃+ j
k

)

× (τ + τ̃ + j − 2)!
j !

)

+ 1

2

(

δT,˜T (n) − δT (n) − δ
˜T (n)

)

− Q(T )Q(˜T )

τ (τ − 1)̃τ (̃τ − 1)h2
+ 1

2h

(

Q(T )

τ (τ − 1)

(

̂δT (n) −̂δT,˜T (n)
)

+ Q(˜T )

τ̃ (̃τ − 1)

(

̂δ
˜T (n) −̂δT,˜T (n)

)

)

−(̂δT,˜T (n)2 −̂δT (n)2 −̂δ
˜T (n)2)

]

n + o(n),

where δT (·),̂δT (·), and δT,˜T (·),̂δT,˜T (·) are oscillating functions (possibly 0), and the
first two are the same as those that appear in the variance.

Another main result of this paper is the following theorem and its corollary. These
results use a terminology from multivariate statistics. The notation Nk(0,�) stands
for the multivariate jointly normally distributed random vector with mean vector 0
(of k components) and k × k covariance matrix �. When k = 1, we shall write the
univariate normal variate in the usual form as N (0, σ 2), where the 0 and σ 2 are both
scalars.

Theorem 2 Let C = {Tν | ν ∈ I} be a collection of nonoverlapping tries, all of size
τ > 1, where I is finite or countably infinite. Let Xn,T be the number of occurrences
of a shape T of size τ in an m-ary trie constructed over n independent strings from
an m-ary alphabet {a1, . . . , am}, with probabilities p j > 0, for j = 1, . . . ,m. For
real numbers αν , let

∑

ν∈I ανXn,Tν be any arbitrary nontrivial linear combination of
these counts (not all α’s are 0). We then have

∑

ν∈I ανXn,Tν − μC(n) n

σC(n)
√
n

D−→ N (0, 1),

where μC(n) and σ 2
C (n) are the coefficients of n in the asymptotic expansions for

E[∑ν∈I ανXn,Tν ] and Var[∑ν∈I ανXn,Tν ] implicitly given, respectively, by Propo-
sition 1 and Theorem 1.3

3 In our case, the variance σ 2
C(n) will always be strictly positive. For a more in-depth consideration of the

variance for shape parameters in random tries, see Schachinger [23].
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In numerous cases, the normality of the univariate linear combination gives us a
multivariate central limit theorem. Let Xn,C be the vector with components Xn,Tν , for
ν ∈ I. A corollary of Theorem 2 is that in the aperiodic case, we have

Xn,C − μC(n) n√
n

D−→ N|I|(0,�C),

where μC is the vector with nonoscillating components that are the linearity coeffi-
cients of the individual means, and N|I|(0,�C) is the multivariate jointly normally
distributed random vector with mean vector 0 (of |I| components), and the entries of
�C are the nonoscillating linearity coefficients in the variances and covariances.4

Let {αν | ν ∈ I} be an arbitrary collection of real numbers (not all zero). Let

Yn,C =
∑

ν∈I
ανXn,Tν ;

it is our aim to show that, when appropriately centered and normalized, Yn,C converges
in distribution to a standard normal random variate (in the aperiodic case). According
to the definition of a multivariate distribution of an infinite-dimensional vector, as
given in Footnote 4, it suffices to consider only (arbitrary) finite linear combinations.
So, with no loss of generality, we consider I finite. The reader will be alerted at a
few places in the sequel, when we switch back to considering an infinitely countable
indexing set.

4 A Probability Space Underlying Tries

Our motivation is that any n distinct, infinite-length strings S1, . . . , Sn uniquely define
a trie Tn . Each of the n external nodes corresponds to one of the strings (say Si ) as
follows: The path from the root to the external node corresponds exactly to the shortest
prefix Wi of Si that is not a prefix of any other S j . Since we deal with strings of
infinite length, however, the potential overlaps among strings can be arbitrarily long.
Therefore, to rigorously establish our probability model, we use a measure-theoretic
setup. This has traditionally been accomplished with an approach relying on cylinders;
see [22]. Our methodology of setting up this probability space is different (our hope
is to make the process more transparent to the reader).

Let A∞ = ∏∞
n=1A = A × A × A × . . . denotes the set of all infinite-length

strings. We define
 =∏∞
n=1 A∞. Each ω ∈ 
 is an infinite-length (ordered) tuple of

infinite-length strings, i.e.,ω = (S1, S2, S3, . . .), where Si ∈ A∞, i.e., each coordinate
of ω is an infinite-length string of characters from A.

The trie T (W1, . . . ,Wn) induced by a collection (W1, . . . ,Wn) is defined as

T (W1, . . . ,Wn) = {ω = (S1, S2, . . .) ∈ 
 | Wj is a prefix of S j for 1 ≤ j ≤ n}.

4 We take an infinite-dimensional random vector to have a multivariate normal distribution, when every
nonzero finite linear combination of its components has a univariate normal distribution.
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We define the collection of all tries of size n as:

Tn = {T (W1, . . . ,Wn) | (W1, . . . ,Wn) has the trie property},

and then, the collection of all tries is

T :=
∞
⋃

n=1

Tn .

We say that two tries are disjoint if neither is a subtree of the other. We use the notation
T ⊆ T ′ to indicate that T is a subtree of T ′.

Several remarks help us prepare the setup of the measure space and the probability
measure on this space.

Remark 3 There are a countable number of tries.

Proof Since the collection A∗ of all finite-length strings is countable, it follows that
there are a countable number of tuples (W1, . . . ,Wn) satisfying the trie property, so
Tn is countable. Thus, T is countable too. �
Remark 4 For each fixed n, the tries in Tn are disjoint.

Remark 5 For fixed m and n with m < n, if T ∈ Tm and T ′ ∈ Tn , then either T and
T ′ are disjoint, or T ′ ⊆ T . Moreover, if T ′ ⊆ T , then height(T ) ≤ height(T ′), where
height(T (W1, . . . ,Wn)) is the length of the longest word among the W ’s.

Remark 6 If K is a collection of tries, we can use Remarks 4 and 5 to replace K with
another collection of tries L ⊆ K such that

⋃

T∈L T = ⋃

T∈K T , and such that the
tries in L are disjoint. In fact, L can be built constructively from K: Organize the
tries from K according to increasing heights. Only put a trie from K into L, if it is
disjoint from all tries of the same or lesser height, as compared to the other tries in L.
(We organize tries by height instead of numbers of leaves, since there are only a finite
number of tries of each height, but there are an infinite number of tries for each fixed
number n of leaves, with n ≥ 2.)

Now denote the set of all countable unions of tries as

F =
{
⋃

T∈K
T | K ⊆ T

}

.

Remark 7 The collection F is a σ -field.

Proof We show (1) 
 ∈ F , (2) F is closed under countable unions, and (3) F is
closed under complementation.

Using n = 1 and W1 = ε (the trivial string of length 0), we see T (W1) = 
,
so 
 ∈ F . Since each element of F is a countable union of tries, F is closed under
countable unions. Finally, we show thatF is closed under complements too. Consider
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an element of F , which necessarily has the form
⋃

T∈K T for some collection of
tries K ⊆ T . Now define a new collection of tries, denoted by K′ ⊆ T as follows:
For each T ′ ∈ T , let T ′ ∈ K′ if and only if T ′ is disjoint from all T ∈ K. Then,
⋃

T∈K T and
⋃

T ′∈K′ T ′ form a partition of 
, i.e., they are disjoint, and their union
is exactly 
. Therefore,

⋃

T ′∈K′ T ′ is a countable union of tries that is exactly the
complement of

⋃

T∈K T . So, F is closed under complementation. (Note: We do not
claim K ∪ K′ = T . There are generally tries which are neither in K nor in K′.)

Finally, we define the probability measure on F . For each T ∈ T , we write T =
T (W1, . . . ,Wn) for some n and somefinite-length stringsWj . IfWj = ai1ai2 . . . ai|W j | ,

we define P(Wj ) = ∏|Wj |
k=1 pik . Then, we define P(T ) = ∏n

j=1 P(Wj ). Finally, if
⋃

T∈K T ∈ F for some collection of tries K ⊆ T , by Remark 6, we can replace K
with a collection of tries L such that

⋃

T∈L T =⋃T∈K T and such that the tries in L
are disjoint. Thus, we define

P

(
⋃

T∈K
T
)

= P

(
⋃

T∈L
T
)

:=
∑

T∈L
P(T ).

In the sequel, for all fixed population models (fixed n), the triple (
,F ,P), with
the components just described, will be the probability space on which all random
variables are defined. For Poissonized random variables, an additional space derived
from (
,F ,P) will shortly be discussed.

5 Poissonization

Let φn,C(u) = E[euYn,C ] be the moment-generating function of the linear combination
Yn,C . We wish to asymptotically identify φn,C(u). This type of problem is less difficult
in the Poisson world. Define the super moment-generating function

C(u, z) =
∞
∑

n=0

φn,C(u)
zn

n! .

We interpret the function ˜C(u, z) := e−zC(u, z) as a Poisson transform or “pois-
sonization.” Indeed, we have

˜C(u, z) =
∑

n≥0

E[euYn,C ] z
n

n! e
−z

=
∑

n≥0

E[euYn,C ]P(Nz = n)

=
∑

n≥0

E[euYNz ,C | Nz = n]P(Nz = n)

= E
[

euYNz ,C
]

,
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where Nz is a random variable with a Poisson distribution withmean z. Thus,˜C(u, z)
is themoment-generating functionof a versionofYn,C with Nz replacing thefixedvalue
n, transforming the view from a fixed population to a Poisson-distributed population.
With the Poisson random variable with a large parameter being highly concentrated
about its mean, and the Poisson model enjoying several convenient independencies
in the subtrees, this poissonization provides an asymptotic approximation for the
moment-generating function of Yn,C when we take z = n.

Likewise, we can study the Poissonizedmean and variance then depoissonize them.
For details on depoissonization see [18], and for a broad discussion see [24].

Note that Poissonized random variables should be defined on the product space

(
,F ,P) × (R+,B+,P0) = (
 × R
+,F × B

+,P × P0),

where R+ is the positive real line, B+ is the usual Borel sigma field generated by the
intervals (a, b), b > a > 0, and P0 is the Poisson probability measure. Later in the
paper, we will use analytic continuation to define YNz ,C , for z ∈ C.

6 Proofs

For any given motif T (of size τ ), we can express Xn,T in terms of indicators. We do
not impose a condition on the sizes of the tries in the collection until Sect. 6.7. Let
In,T,w be the indicator that assumes the value 1, if a random trie with n leaves contains
T as a subtree rooted at an internal node of the trie joined to the root of the subtrie
with a path along which the word w is formed. It is clear that

Xn,T =
∑

w∈A∗
In,T,w.

The indicators have the probabilities

P(In,T,w = 1) =
(

n

τ

)

P
τ (w)

(

1 − P(w)
)n−τQ(T ), (1)

where Q(T ) is the shape functional of T . The linear combination Yn,C has the repre-
sentation

Yn,C =
∑

ν∈I
αν

∑

w∈A∗
In,Tν ,w. (2)

Subsequently, the Poissonized linear combination is

YNz ,C =
∑

ν∈I
αν

∑

w∈A∗
INz ,Tν ,w. (3)
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6.1 The Average of the Linear Combination

The linear combination (2) has the average

E[Yn,C] =
∑

ν∈I
αν

∑

w∈A∗
E
[

In,Tν ,w

] =
∑

ν∈I
αν

∑

w∈A∗

(

n

τ

)

P
τ (w)

(

1 − P(w)
)n−τ Q(Tν).

To find the average number of occurrences of a certain motif T (of size τ ) in a trie,
we can take a one-point indexing set I = {1}. That is, T1 = T is the only trie in the
set. Then, with α1 = 1, we have

E[Xn,T ] =
∑

w∈A∗

(

n

τ

)

P
τ (w)

(

1 − P(w)
)n−τQ(T ).

For later reference, we recall here that the Poissonized average is

E[XNz ,T ] =
∞
∑

n=0

E[Xn,T ] z
n

n! e
−z

= e−z

τ !
∑

w∈A∗
P

τ (w)zτ
∞
∑

n=τ

(

1 − P(w)
)n−τ

zn−τ

(n − τ)! Q(T )

= Q(T )

τ ! B1(z), (4)

where
B1(z) :=

∑

w∈A∗
P

τ (w)zτ e−P(w)z . (5)

The function B1(z) has been analyzed in [21]. It has the asymptotic representation

B1(z) =
(

(τ − 2)!
h

+ ξτ (z)

)

z + o(z),

where ξτ (·) is an oscillating function in the periodic case, or it is 0 in the aperiodic
case. Therefore,

E[XNz ,T ] =
( Q(T )

τ (τ − 1)h
+ ξT (z)

)

z + o(z).

The result for the mean in Proposition 1 follows after depoissonization (see [18,24]).

Remark 8 A useful by-product of the argument is that E[INz ,T,w] = Q(T )zτPτ (w)

e−P(w)z/τ !.
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6.2 The Variance of the Linear Combination

We cannot derive the variance of the linear combination (2) via the same straightfor-
ward depoissonization argument we utilized to asymptotically equate E[Yn,C] with
E[YNz ,C]. However, using sharp depoissonization, we can obtain the estimate

Var[Yn,C] =
(

Var[YNz ,C] − z

[

d

dz
E[YNz ,C]

]2)∣
∣

∣

∣

z=n
+ O(n1−ε) (6)

for some ε > 0. (See [11,13,16] for the details of this technique; note that the tech-
niques of [11] could be used to derive results analogous to those in the present paper.
The methodology of [12] could probably be used to establish Theorem 2 as well.)
Equation (6) implies that to obtain an asymptotic expression for Var[Yn,C], it will
suffice to derive the asymptotics of bothVar[YNz ,C] and d

dz (E[YNz ,C]). We present the
steps of the former calculation in all detail, but leave most of the latter to the reader;
they are fairly standard and closely parallel the later stages of the former.

We first obtain an expression for v(z) := Var[YNz ,C]. It follows from (3) that

Var[YNz ,C] =
∑

κ,ν∈I
ακαν

∑

w,v∈A∗
Cov[INz ,Tκ ,w, INz ,Tν ,v]. (7)

This sum looks daunting to consider in all generality. However, as we shall see, the
overwhelming majority of the terms in it will collapse to zero. We consider four
possible cases for the covariances:

(i) Neither v nor w is a prefix of the other. In this case, Cov[INz ,Tκ ,w, INz ,Tν ,v] =
0. This is a helpful consequence of our working in a Poissonized model—the
makeup of the trie at w is independent of its makeup at v so long as neither w

nor v is a prefix of the other. This conclusion holds regardless of whether κ and
ν are identical or distinct.5

(ii) v = w, and κ = ν. In this case, we have

Cov[INz ,Tκ ,w, INz ,Tν ,v] = Var[INz ,Tν ,w] = E[INz ,Tν ,w] − (E[INz ,Tν ,w])2.

(iii) v = w, and κ �= ν. In this case, we have E[INz ,Tκ ,w INz ,Tν ,w] = 0. This follows
immediately from the nonoverlapping property, which implies that Tκ and Tν

cannot both be rooted at the samenode. So, in this case,Cov[INz ,Tκ ,w, INz ,Tν ,w] =
−E[INz ,Tκ ,w]E[INz ,Tν ,w].

(iv) w is a proper prefix of v (or vice versa). Here, we have v = wax , for some
a ∈ A, x ∈ A∗. Since Tκ and Tν are nonoverlapping, INz ,Tκ ,w and INz ,Tν ,wax

can never simultaneously be 1, and so, we have Cov[INz ,Tκ ,w, INz ,Tν ,wax ] =
−E[INz ,Tκ ,w]E[INz ,Tν ,wax ]. We note that this result holds even if κ = ν.

5 The same is not true in the fixed population model. That is, in case (i), In,Tκ ,v and In,Tν ,w can be
dependent. So, we see the advantage of quickly switching to a Poisson model, rather than transforming
recurrences in the fixed population model.
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Breaking the covariance expression in (7) into these four cases, we obtain

Var[YNz ,C] =
∑

ν∈I
α2

ν

∑

w∈A∗
E[INz ,Tν ,w] − (E[INz ,Tν ,w])2

−
∑

κ,ν∈I
κ �=ν

ακαν

∑

w∈A∗
E[INz ,Tκ ,w]E[INz ,Tν ,w]

− 2
∑

κ,ν∈I
ακαν

∑

w,x∈A∗
a∈A

E[INz ,Tκ ,w]E[INz ,Tν ,wax ]

=
∑

ν∈I
α2

ν

∑

w∈A∗
E[INz ,Tν ,w]

−
∑

κ,ν∈I
ακαν

∑

w∈A∗
E[INz ,Tκ ,w]E[INz ,Tν ,w]

− 2
∑

κ,ν∈I
ακαν

∑

w,x∈A∗
a∈A

E[INz ,Tκ ,w]E[INz ,Tν ,wax ]. (8)

6.3 Mellin Transform

Our tool to complete this derivation is an integral transform. The Mellin transform of
a function f (x) is

∫ ∞

0
f (x)xs−1 ds,

andwill be denoted by f ∗(s). For s ∈ C, theMellin transform usually exists in vertical
strips in the complex plane of the form

a < � s < b,

for real numbers a < b. We shall denote this strip by 〈a, b〉. The function f (x) can
be recovered from its transform by a line integral

f (x) = 1

2π i

∫ c+i∞

c−i∞
f ∗(s)x−s ds,

for any c ∈ (a, b).
At the time of calculating the integral in the inversion, one seeks asymptotic approx-

imations. One employs the method of “closing the box” (this method is discussed
in [20,24]). In this method, one takes the complex integration over the line c − iM
and c+ iM and then closes the box connecting the four corners c± iM , and d ± iM ,
for an arbitrary d > c. The number M is chosen in such a way that no pole is crossed.

123



J Theor Probab (2017) 30:1225–1254 1239

Cauchy’s residue theorem gives

lim
M→∞

∮

f ∗(z)z−s ds = 2π i
∑

residues of poles in 〈c, d〉.

The contour integral can be written as

∮

f ∗(s)z−sds =
∫ d−iM

c−iM
+
∫ d+iM

d−iM
+
∫ c+iM

d+iM
+
∫ c−iM

c+iM
.

In the context of random structures, the Mellin transform often includes gamma func-
tions. In this context, when we let M → ∞, the line integrals at the top and bottom
sides of the box approach 0, as the magnitude of the gamma function decreases expo-
nentially fast with its imaginary part. Moreover, the integral at the right side of the
box introduces an error term of the order O(z−d). Hence, we have

f (z) = O(z−d) −
∑

residues of poles in 〈c, d〉.

The problem has now been reduced to residue computation. See [7] for a survey on
the use of the Mellin transform in the analysis of random structures and algorithms,
where the reader can find detailed discussions on the procedure and other standard
tricks of the trade.

By (8) and Remark 8, we can now write v(z) = v1(z) − v2(z) − 2v3(z), where

v1(z) =
∑

ν∈I
α2

ν

Q(Tν)

τν !
∑

w∈A∗
zτνP

τν (w)e−zP(w),

v2(z) =
∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∑

w∈A∗
zτκ+τνP

τκ+τν (w)e−2zP(w),

v3(z) =
∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∑

w,x∈A∗
a∈A

zτκ+τν P
τκ+τν (w)Pτν (ax)e−zP(w)(1+P(ax)).

Here, τν simply denotes the size of Tν .

6.4 Fundamental Strip

Now, we want to take Mellin transforms. It is easy to establish a left-hand boundary
for our fundamental strip. Let τ = min{τν | ν ∈ I}, then, as z → 0, we have v1(z) =
O(zτ ), and v2(z) and v3(z) are both O(z2τ ). Barring the trivial motifs which are
either empty or have only one string (and therefore create no kind of splitting), we
now consider the motifs with at least two strings. Since a nontrivial motif has at least
two strings for its construction, then τ ≥ 2, and we have v(z) = O(z2), as z → 0.
We also note that no member of a nonoverlapping collection of motifs can be of size
one or less, as such motifs are overlapping with every other possible motif.
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Finding the right-hand Mellin boundary requires a bit more work. We note that

v1, v2 and v3 are all O
(

∑

w∈A∗(zP(w)) j e−zP(w)
)

, as z → ∞, for some j ≥ 2 (either

j = τν , or j = τκ + τν .) For any ε ∈ (0, 1), we can write

∑

w∈A∗
(zP(w)) j e−zP(w) =

∑

w∈A∗
P
1+ε(w) × z jP j−(1+ε)(w)e−zP(w). (9)

Doing minimization by calculus on the expression z jP j−(1+ε)(w)e−zP(w), with P(w)

as the variable, we find that

z jP j−(1+ε)(w)e−zP(w) ≤ z1+ε( j − 1 − ε) j−1−εe− j+1+ε = O(z1+ε).

So, (9) implies that

∑

w∈A∗
(zP(w)) j e−zP(w) =

∑

w∈A∗
P
1+ε(w)O(z1+ε) = O(z1+ε).

Therefore, for each j = 1, 2, 3, we have v j (z) = O(z1+ε), for every ε > 0, as
z → ∞. We have now shown that 〈−2,−1〉 is a valid fundamental strip for v(z).

6.5 Asymptotics of v(z)

Wenow take theMellin transformof v(z). Recalling that v(z) = v1(z)−v2(z)−2v3(z),
we extract the asymptotics of v(z) one piece at a time. We have

v∗
1(s) =

∑

ν∈I
α2

ν

Q(Tν)

τν !
∑

w∈A∗
P

−s(w )�(s + τν) =
∑

ν∈I
α2

ν

Q(Tν)

τν ! × �(s + τν)

1 −∑m
j=1 p

−s
j

.

Invoking the closing-the-box method, after a residue calculation, we find the inverse
Mellin transform:

v1(z) = z

h

∑

Tν∈I
α2

ν

Q(Tν)

τν(τν − 1)
+ δC,1(z)z + o(z),

where δC,1 is possibly fluctuating with average value zero, when the probability set is
aperiodic, and is 0 otherwise. In the periodic case, we can improve the o(z) bound to
O(z1−ε), for some 0 < ε < 1.

A comprehensive discussion about the difference between the periodic and aperi-
odic cases is given at length in [9]. For readers who want to understand the nuances
of these case, this treatise is strongly recommended.
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Regarding v2(z), we have

v∗
2(s) =

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∑

w∈A∗
2−s−τκ−τνP(w)−s�(s + τκ + τν)

=
∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν ! 2−s−τκ−τν
�(s + τκ + τν)

1 −∑m
j=1 p

−s
j

.

After a residue calculation, we find the inverse Mellin transform:

v2(z)= z

h

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

(τκ + τν)(τκ + τν − 1)
21−τκ−τν

(

τκ + τν

τν

)

+ δC,2(z)z + o(z),

where δC,2 is possibly fluctuating with average value zero, when the probability set is
aperiodic, and is 0 otherwise. In the periodic case, we can improve the o(z) bound to
O(z1−ε), for some ε > 0.

The Mellin transform of v3(z) is the most complicated to calculate. We first note
that we have

v3(z)=
∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∑

w,x∈A∗
a∈A

zτκ+τν P
τκ+τν (w)e−zP(w)

P
τν (ax)e−zP(w)P(ax)

=
∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∑

w,x∈A∗
a∈A

zτκ+τνP
τκ+τν (w)e−zP(w)

P
τν (ax)

∞
∑

j=0

(−zP(w)P(ax)) j

j ! . (10)

We can carry theMellin transform inside the innermost sum (recall that we are dealing
with finite indexing sets), yielding

v∗
3(s)=

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ !τν !
∑

w,x∈A∗
a∈A

∞
∑

j=0

(−1) jPτν+ j (ax)P−s(w)�(s+τκ+τν + j)

j ! .

Now, we approximate the inverse Mellin by closing the box and considering residues.
The Gamma functions are all analytic in 〈−2,−1〉, since τκ , τν ≥ 2. So, all the
singularities come from

∑

w∈A∗ P−s(w). Taking the inverse Mellin transform, we
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have

v3(z) = z

h

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∑

x∈A∗
a∈A

∞
∑

j=0

(−1) jPτν+ j (ax) (τκ + τν + j − 2)!
j !

+ δC,3(z)z + o(z)

= z

h

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∞
∑

j=0

(−1) j
∑m

k=1 p
τν+ j
k

1 −∑m
k=1 p

τν+ j
k

(τκ + τν + j − 2)!
j !

+ δC,3(z)z + o(z),

where δC,3 is possibly fluctuating with average value zero, when the probability set is
aperiodic, and is 0 otherwise. In the periodic case, we can improve the o(z) bound to
O(z1−ε), for some 0 < ε < 1.

To summarize, we have

v1(z) = z

h

∑

ν∈I
α2

ν

Q(Tν)

τν(τν − 1)
+ δC,1(z)z + o(z),

v2(z) = z

h

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

(τκ + τν)(τκ + τν − 1)
21−τκ−τν

(

τκ + τν

τν

)

+ δC,2(z)z + o(z),

v3(z) = z

h

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !
∞
∑

j=0

(−1) j
∑m

k=1 p
τν+ j
k

1 −∑m
k=1 p

τν+ j
k

× (τκ + τν + j − 2)!
j ! + δC,3(z)z + o(z).

Since v(z) = vC,1(z) − vC,2(n) − 2vC,3(z), we have

v(z) = z

h

∑

ν∈I
α2

ν

Q(Tκ)

τν(τν − 1)
− 2z

h

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !

×
[

2−τκ−τν (τκ + τν − 2)! +
∞
∑

j=0

(−1) j
∑m

k=1 p
τν+ j
k

1 −∑m
k=1 p

τν+ j
k

× (τκ + τν + j − 2)!
j !

]

+ δC(z)z + o(z),

where δC(t) := δC,1(t) − δC,2(t) − 2δC,3(t).

We recall that our expression (6) for Var[Yn,C] includes −z
(

d
dzE[YNz ,C]

)2
. We

must, therefore, calculate the asymptotics of d
dzE[YNz ,C]. Taking the derivative of (4)

and summing over all motifs in C, we obtain

d

dz
E[YNz ,C] =

∑

ν∈I
αν

Q(Tν)

τν !
∑

w∈A∗
τνz

τν−1
P(w)τν e−zP(w) − zτνP(w)τν+1e−zP(w).
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From here, using the same techniques we employed to discover the asymptotics of
v(z), we find that

d

dz
E[YNz ,C] = 1

h

∑

Tν∈C
αν

Q(Tν)

τν(τν − 1)
+ δC,4(z) + o(1).

The result of Theorem 2 now follows from depoissonization (again see [18,24]),
i.e., by substituting our calculated expressions into (6). Making the substitutions, we
find that

Var[Yn,C]
= n

h

(

∑

ν∈I
α2

ν

Q(Tκ)

τν(τν − 1)
− 2

∑

κ,ν∈I
ακαν

Q(Tκ)Q(Tν)

τκ ! τν !

×
[

2−τκ−τν (τκ + τν − 2)! +
∞
∑

j=0

(−1) j
∑m

k=1 p
τν+ j
k

1 −∑m
k=1 p

τν+ j
k

(τκ + τν + j − 2)!
j !

])

+ δC(n)n − n

(

1

h

∑

Tν∈C
αν

Q(Tν)

τν(τν − 1)
+̂δC(n)

)2

+ o(n). (11)

We note that in the periodic case, the error term O(n1−ε) in our symbolic variance
expression (6) will survive the depoissonization process, so that our error in (11)
will improve to O(n1−ε). In the aperiodic case, however, the O(n1−ε) bound will be
subsumed by the coarser o(z) estimates for our Poissonized quantities.

6.6 Covariance Structure

To find the variance of the number of occurrences of an individual motif T (of size
τ ) in a trie, again we take a one-point indexing set I = {1}, with trie α1 = 1, and
T1 = T . So,

Var[Xn,T ] =
[

Q(T )

τ (τ − 1)h
− 2Q2(T )

h

(

2−2τ

2τ(2τ − 1)

(

2τ

τ

)

+ 1

(τ !)2
∞
∑

j=0

(−1) j

∑m
k=1 p

j+τ
k

1 −∑m
k=1 p

j+τ
k

× ( j + 2τ − 2)!
j !

)

+ δT (n) −
( Q(T )

τ (τ − 1)h
+̂δT (n)

)2
]

n + o(n).

To compute the covariance between two nonoverlapping tries T and ˜T , we take a
collection C = {T,˜T } comprised of only these two trees (of sizes τ and τ̃ , respectively)
and consider the linear combination Xn,T + Xn,˜T . In this manner, we arrive at an
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analogous expression for Var[Xn,T + Xn,˜T ]. Then, from the standard relation

Var
[

Xn,T + Xn,˜T

] = Var
[

Xn,T
]+ Var

[

Xn,˜T

]+ 2Cov
[

Xn,T , Xn,˜T

]

,

and the already computed variance, we find the covariance

Cov[Xn,T , Xn,˜T ]

=
[

− 2Q(T )Q(˜T )

τ ! τ̃ ! h
(

2−τ−τ̃ (τ + τ̃ − 2)!

+ 2−1
∞
∑

j=0

(−1) j
(

∑m
k=1 p

τ+ j
k

1 −∑m
k=1 p

τ+ j
k

+
∑m

k=1 p
τ̃+ j
k

1 −∑m
k=1 p

τ̃+ j
k

)

× (τ + τ̃ + j − 2)!
j !

)

+ 1

2

(

δT,˜T (n) − δT (n) − δ
˜T (n)

)− Q(T )Q(˜T )

τ (τ − 1)̃τ (̃τ − 1)h2

+ 1

2h

(

Q(T )

τ (τ − 1)

(

̂δT (n) −̂δT,˜T (n)
)+ Q(˜T )

τ̃ (̃τ − 1)

(

̂δ
˜T (n) −̂δT,˜T (n)

)

)

− (̂δT,˜T (n)2 −̂δT (n)2 −̂δ
˜T (n)2)

]

n + o(n),

6.7 The Moment-Generating Function of the Linear Combination

Until now, we have not imposed a condition on the sizes of the tries in the collection.
However, arguments for the limit distribution gomore smoothly, if we assume the tries
in the collection all have the same size.

Let C be a collection of tries all having the same size τ . The moment-generating
function φn,C(u) of Yn,C can be developed recursively. It is clear that when n > τ ,
we do not have a tree with any shape from C starting at the root of the trie. Thus, for
n > τ , we have a recurrence, obtained by conditioning on N1, . . . , Nm , the sizes of
the subtrees, and following the first letter in each word, which is namely

φn,C(u) = E
[

euYn,C
]

=
∑

n1+···+nm=n

E

[

exp
(

u
∑

ν∈I
ανXn,Tν

)

| N1 = n1, . . . , Nm = nm
]

× P(N1 = n1, . . . , Nm = nm)

=
∑

n1+···+nm=n

E

[

exp
(

u
∑

ν∈I
αν

m
∑

j=1

Xn j ,Tν

)]

(

n

n1, . . . , nm

)

pn11 . . . pnmm

=
∑

n1+···+nm=n

E
[

exp
(

uYn1,C + · · · + uYnm ,C
)]

(

n

n1, . . . , nm

)

pn11 . . . pnmm .
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By the independence in the subtrees, we can write, for n > τ ,

φn,C(u) = n!
∑

n1+···+nm=n

m
∏

j=1

φn j ,C(u) p
n j
j

n j ! . (12)

Note that, for n < τ , we have Yn,C = 0, so

φn,C(u) = E
[

euYn,C
] = E[e0] = 1, for n < τ. (13)

Lemma 1 The Poissonized moment-generating functionC := ezE[euYNz ,C ] satisfies
the recurrence

˜C(u, z) = (φτ,C(u) − 1
)

(

1 −
m
∑

j=1

pτ
j

) zτ

τ ! e
−z +

m
∏

j=1

˜C(u, p j z). (14)

Proof We compute C(u, z) from (12) and the boundary conditions (13). We get

˜C(u, z)=e−z
τ−1
∑

n=0

zn

n! + φτ,C(u)
zτ

τ ! e
−z +

∞
∑

n=τ+1

∑

n1+···+nm=n

m
∏

j=1

φn j ,C(u)p
n j
j zn j e−p j z

n j !

=e−z
τ−1
∑

n=0

zn

n! + φτ,C(u)
zτ

τ ! e
−z + e−z

∞
∑

n=0

∑

n1+···+nm=n

m
∏

j=1

φn j ,C(u)(p j z)n j

n j !
(15)

− e−z
τ
∑

n=0

∑

n1+···+nm=n

m
∏

j=1

φn j ,C(u)(p j z)n j

n j ! .

For n < τ , the solution of the equation n1+· · ·+nm = n in nonnegative integers yields
nonnegative integers n j that are all less than τ , with corresponding φn j ,C(u) = 1, for
j = 1, . . . ,m. In this case, the product in (15) of the previous display becomes

m
∏

j=1

φn j ,C(u)(p j z)n j

n j ! =
m
∏

j=1

(p j z)n j

n j ! .

In the case n = τ , we have two cases:

(i) The integer solution gives all variables equal to 0, except nr , for some 1 ≤ r ≤ m,
which must be equal to τ . In this case, we have

m
∏

j=1

φn j ,C(u)(p j z)n j

n j ! =
m
∑

r=1

⎛

⎜

⎜

⎜

⎝

∏

j=1
j �=r

m φ0,C(u)(p j z)0

0!

⎞

⎟

⎟

⎟

⎠

× φτ,C(u)(pr z)τ

τ ! = φτ,C(u)zτ

τ !
m
∑

r=1

pτ
r .

123



1246 J Theor Probab (2017) 30:1225–1254

(ii) The integer solution gives all variables n j less than τ , yielding

m
∏

j=1

φn j ,C(u)(p j z)n j

n j ! =
m
∏

j=1

(p j z)n j

n j ! .

The following calculation ensues:

˜C(u, z) = e−z
τ−1
∑

n=0

zn

n! + φτ,C(u)
zτ

τ ! e
−z +

m
∏

j=1

˜C(u, p j z)

− e−z
τ
∑

n=0

zn

n!
∑

n1+···+nm=n

(

n

n1, . . . , nm

) m
∏

j=1

p
n j
j

+ e−z
m
∑

j=1

zτ

τ ! p
τ
j − e−z φτ,C(u)zτ

τ !
m
∑

j=1

pτ
j .

By the multinomial theorem, the sum involving the multinomial coefficients is 1, and
we get

˜C(u, z) = e−z
τ−1
∑

n=0

zn

n! + φτ,C(u)
zτ

τ ! e
−z +

m
∏

j=1

C(u, p j z) − e−z

τ
∑

n=0

zn

n! + (1 − φτ,C(u))zτ

τ ! e−z
m
∑

j=1

pτ
j

= (φτ,C(u) − 1)
zτ

τ !
(

1 −
m
∑

j=1

pτ
j

)

e−z +
m
∏

j=1

˜C(u, p j z).

6.8 Limit Distributions

Our final task is to prove Theorem 2, which states that after centralization and normal-
ization, the linear combination Yn,C converges in distribution to the standard normal
distribution. For this job, we use a powerful result from Jacquet and Szpankowski
(adapted to our purposes) which is specifically formulated for CLT-type arguments
which involve poissonization.

Lemma 2 Jacquet and Szpankowski [17]Let Wn be a random variable and ˜G(u, z) =
E[euWNz ] its Poissonized moment-generating function. Consider u in a fixed interval
on the real line, centered at the origin (the values of the constants depend on the length
of this fixed interval). Suppose further that there exist values ε > 0, A > 0, B > 0,
and R > 0, such that the following conditions hold:

1. We have

|Wn| ≤ Cn, E[WNz ] = μ̃(z)z + o(z), and Var[WNz ] = σ̃ 2(z)z + o(z),
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for some fixed constant C > 0 and some bounded functions μ̃(z) and σ̃ 2(z).
2. In the cone C(ε) = {z = x + iy : |y| ≤ x1−ε}, we have the bound

∣

∣ log
(

˜G(u, z)
)∣

∣ ≤ B|z|1+ε, when |z| > R.

3. Let Vn := Var[Wn]. Outside the cone C(ε), when |z| = n, we have the bound

∣

∣

∣ez˜G
( u√

Vn
, z
)∣

∣

∣ ≤ exp(n − An1/2+ε),

for sufficiently large n.

Then, the random variable (Wn − μ̃(n))/
√
Vn converges in distribution to a standard

normal.

To prove Theorem 2, it suffices to show that the linear combination Yn,C satisfies the
conditions of Lemma 2, with ˜C(u, z) playing the role of ˜G(u, z). Our proof of this
parallels the argument given in [18].

We have already proved that Condition 1 holds for YNz ,C , as we computed its mean
and variance en route to proving Proposition 1 and Theorem 1. The requirement that
|Yn,C | ≤ Cn follows from the fact that Yn,C =∑ν∈I ανXn,Tν where I is assumed to
be finite (see the paragraph at the end of Sect. 3), and we know that each Xn,Tν ≤ n
since a given motif can occur at most n times in a trie of size n.

Regarding Condition 2, we note that the assumption that |y| ≤ x1−ε implies that
|z| ≤ x

√
1 + x−2ε ≤ x(1 + x−ε). From there, we can conclude that

∣

∣e−z
∣

∣ = e−x ≤ exp
(

− |z|
1 + x−ε

)

.

Plugging this bound into the definition of ˜C , we obtain

∣

∣˜C(u, z)
∣

∣ ≤ |e−z |
∑

n≥0

|zeuC |n
n! ≤ exp

(

− |z|
1 + x−ε

+ |z|euC
)

,

fromwhich Condition 2 readily follows. (In the first inequality, we used the hypothesis
that |Yn| ≤ Cn.)

Condition 3 is the most interesting to verify. Our device (inspired by [18]) will be
to induct over a sequence of nested domains

Dk = {z : ξ ≤ |z| ≤ ξλk},

where ξ > 0 and 1 < λ <
(

max1≤ j≤m{p j }
)−1 are fixed quantities. We note that

whenever z ∈ Dk+1, we have p j z ∈ Dk for every j .
The recurrence (14) from Lemma 1 lies at the heart of our methodology. Unfor-

tunately (14) is phrased in terms of a product, and our technique requires a sum. We
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circumvent this problem by taking the log of (14). Before doing this, however, we
must rewrite its right-hand side as a product (after first multiplying through by ez):

C(u, z)

=
(

m
∏

j=1

C(u, p j z)
)

×
((

φτ,C(u) − 1
)(

1 −∑m
j=1 p

τ
j

) zτ
τ !

∏m
j=1 C(u, p j z)

+ 1

)

=
(

m
∏

j=1

C(u, p j z)
)

×
⎛

⎝

(

φτ,C(u) − 1
)(

1 −∑m
j=1 p

τ
j

) zτ
τ !

C(u, z) − (φτ,C(u) − 1
)

(

1 −∑m
j=1 p

τ
j

)

zτ
τ !

+ 1

⎞

⎠ .

Solving (14) for
∏m

j=1 C(u, p j z), plugging into the denominator of the line above,
and simplifying, we obtain

C(u, z) =
⎛

⎝

m
∏

j=1

C(u, p j z)

⎞

⎠×
⎛

⎜

⎝

1
C(u,z)

(φτ,C(u)−1)(1−∑m
j=1 pτ

j )
zτ
τ !

− 1
+ 1

⎞

⎟

⎠
.

To simplify the notation, we define un := u/
√
Vn . Now, we want to bound the

rightmost term close to 1. To do that, we note that for any α > 0, we may assume
that |C(un, z)| ≥ e|z|1−α

, because if this is not so, our induction hypothesis (which
appears ahead, at (17)) is already satisfied. With this assumption, we obtain

|C(un, z)|
(

φτ,C(un) − 1
)

(

1 −∑m
j=1 p

τ
j

) |z|τ
τ !

≥ e|z|1−α

τun
1−τun

(

1 −∑m
j=1 p

τ
j

) |z|τ
τ !

.

From here, we compute

C(un, z) =
⎛

⎝

m
∏

j=1

C(un, p j z)

⎞

⎠×
(

1 + O(n−1/2|z|τ e−|z|1−α

)
)

.

Taking the logarithm and bounding, we find that

∣

∣L(un, z)
∣

∣ ≤
m
∑

j=1

∣

∣L(un, p j z)
∣

∣+ C |z|τ e−|z|1−α

n−1/2, (16)

where we write L(u, z) := log(C(u, z)). Here, the constant C depends on u and p j ,
but is independent of n.

We now state our inductive hypothesis: For C as given in (16) and some constant
A > 0, we have

|L(un, z)| ≤ |z| − A|z|1/2+ε + Cn−1/2
k
∑

�=0

∑

w∈A�

|P(w)z|τ e−P(w)|z|1−α

, (17)
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for every z ∈ Dk ∩ C(ε)C such that |z| ≤ n, where C(ε)C denotes the complement of
the cone C(ε).

We first handle the k = 0 step. In D0 ∩ C(ε)C , our hypothesis is that

∣

∣L(un, z)
∣

∣ ≤ |z| − An−1/2|z|1/2+ε + C |z|τ e−|z|1−α

. (18)

Now, by choosing our starting radius ξ and our starting n value large enough, we can
guarantee that |C(un, z)| is as close as we like to |ez |. And we know that |ez | < e|z|
since we are outside a cone C(ε) which contains the positive real axis. So under these
circumstances, we can always find A such that

∣

∣C(un, z)
∣

∣ < exp
(|z| − A|z|1/2+ε + Cn−1/2|z|τ e−|z|1−α )

.

Since L(un, z) = log(C(un, z)), we can conclude that (18) holds (though we may
have to adjust ξ slightly, since for every x , we have log |x | ≤ | log(x)| which is the
wrong direction for us here). This concludes the initial step.

For the inductive step, we assume that (17) holds for some k, and take z ∈ Dk+1 ∩
C(ε)C . Then, by our bounded recurrence (16), we have

|L(un, z)| ≤
m
∑

j=1

(

|p j z| − A|p j z|1/2+ε + Cn−1/2

k
∑

�=0

∑

w∈A�

(P(w)p j z)
τ e−P(w)|p j z|1−α

)

+ Cn−1/2|z|τ e−|z|1−α

≤ |z| − A|z|1/2+ε + Cn−1/2
k+1
∑

�=0

∑

w∈A�

(P(w)z)τ e−P(w)|z|1−α

,

which shows that the induction hypothesis holds for k + 1. We can then conclude that
our hypothesis holds on the intersection of the circle {|z| = n} and the complement of
the cone C(ε).

It remains, however, to bound the extraneous term in (17), which is not found in
Condition 3 of Lemma 2. We can obtain the requisite bound by using the Mellin
transform. We rephrase the formulation as

k
∑

�=0

∑

w∈A�

(P(w)z)τ e−P(w)|z|1−α = zτα
k
∑

�=0

∑

w∈A�

(P(w)z1−α)τ e−P(w)|z|1−α

, (19)

and then define

f (y) =
∑

w∈A∗
(P(w)y)τ e−P(w)y,
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so that |zτα| f (|z|1−α) bounds the right-hand side of (19). Taking theMellin transform
of f (y), we obtain

f ∗(s) =
∑

w∈A∗
P(w)−s�(s + τ) = �(s + τ)

1 −∑m
j=1 p

−s
j

,

which is valid in the strip 〈−τ,−1〉. We then evaluate the inverse Mellin integral by
taking the residue at s = −1, and closing the box, and recover the value

f (y) = �(τ − 1)

h
y
(

1 + δ(y) + o(1)
)

,

where δ(y) is a fluctuating function of bounded magnitude if our probability family
is periodic, and 0 otherwise. Now, since |zτα| f (|z|1−α) bounds the right-hand side
of (19), we have

k
∑

�=0

∑

w∈A�

(P(w)|z|)τ e−P(w)|z|1−α ≤ 1

h
|z|1+(τ−1)α �(τ − 1)

(

1 + o(1)
)

.

In our inductive hypothesis (17), the left-hand side of the above inequality is preceded
by n−1/2; the overall effect is of a term of order n1/2+(τ−1)α . So as long as we choose
α satisfying (τ − 1)α < ε, this term is subsumed by the other two, and Condition
3 of Lemma 2 is proven to hold for Yn,C . And this proves convergence to a normal
distribution, as claimed in Theorem 2.

7 Examples

In this section, we provide some examples of particular collections that appear often
in writings on this subject.

7.1 A Binary Trie

The trie arising on the alphabet {0, 1} is common in computer applications as a data
structure. Suppose the probability of 1 is p, and the probability of 0 is q = 1 − p.
Here, the entropy of the probability source is h = −p ln p−q ln q. Suppose the motif
T is the tree in Fig. 3.

This motif occurs in a trie of size 3 with probability 6(p3)(p2q)q = 6p5q2, as
given in Remark 1. In a large trie of size n, this motif occurs

E[Xn,T ] = p5q2

h
n + nξT (n) + o(n)

times on average. The function ξT (·) is zero, when ln p
ln q is irrational. When ln p

ln q is

rational, ξT (·) is an oscillating function. For example, in the unbiased case p = q = 1
2 ,
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Fig. 3 A binary motif

where ln p
ln q = 1, this oscillating function is

ξT (n) = 3

512 ln 2

∑

j∈Z\{0}
�
(

2 + 2π i j

ln 2

)

exp(−2π i j log2 n).

Uniformly in n, this function is bounded by 0.4568554688 × 10−5.
For general p and q, we have

Var[Xn,T ] := v(n) =n

h
p5q2 − 2n

h
p10q4

[

5

16
+ 1

36

∞
∑

j=0

(−1) j
p j+3 + q j+3

1 − p j+3 − q j+3

× ( j + 4)!
j !

]

+ nδT (n) + o(n),

where δT (·) is an oscillating function (identically zero in the case ln p
ln q is irrational).

The Gaussian law is

Xn,T −
( p5q2

h
+ ξT (n)

)

n
√

v(n)

D−→ N (0, 1).

7.2 Two Tries from DNA Data

In the hypervirus genome DNAmodel, the probabilities of the nucleotides A,C, T,G
are, respectively, 0.15, 0.35, 0.35, 0.15, and they are assumed to be independent. This
frequency distribution has the approximate entropy 1.304011483. The strands of DNA
are very long, and the infinite string model provides an approximation. Let us use T
and ˜T to denote the motifs on the left and right (respectively) of Fig. 2. The motif T
has shape functional (4!)(0.152)(0.15 × 0.35)(0.152)(0.15) = 0.00009568125, and
the motif ˜T has shape functional (4!)(0.15)(0.352)(0.352)(0.15) = 0.0081034.

123



1252 J Theor Probab (2017) 30:1225–1254

Ignoring fluctuations, in the trie of n (very large) random DNA strands, we have

E[Xn,T ] ≈ 0.000006115 n, E[Xn,˜T ] ≈ 0.000517849 n,

Var[Xn,T ] ≈ 0.000006114 n, Var[Xn,˜T ] ≈ 0.000516520 n,

and
Cov

[

Xn,T , Xn,˜T

] = −1.56934066 × 10−8 n.

The distribution of the number of occurrences of these two motifs has approximately
bivariate normal distribution.

(

Xn,T

Xn,˜T

) D≈ N2

((

0.000006115
0.000517849

)

n,

(

0.000006114 −1.56934066 × 10−8

−1.56934066 × 10−8 0.000516520

)

n

)

.

7.3 The Number of τ -Cousins

Let C be the collection of all τ -cousins (all tries of size τ ). For τ = 2, there is only
one 2-cousin (I = 1). (Here, we are defining C to just be τ -cousins on the fringe, so
these cherries will not have any extraneous strings at the top of the subtree, attached
to them.) However, for τ ≥ 3, there is a countably infinite number of τ -cousins, so
we can take I to be the set of natural numbers. Let Yn,τ be the number of τ -cousins,
so it is the linear combination

Yn,τ =
∑

ν∈I
Xn,Tν .

According to the calculation of the average of a linear combination, we have

E[Yn,τ ] =
∑∞

j=0 Q(Tj )

τ (τ − 1)h
n + nξ∗

C(n) + o(n) = 1 −∑m
j=1 p

τ
j

τ(τ − 1)h
n + nξ∗

C(n) + o(n),

where ξ∗
C(·) is an oscillating function that collects all the individual oscillations. We

thus recover the result in [21]. The variance of this linear combination (with all α’s
being 1) is

Var[Yn,C] =
(1 −∑m

j=1 p
τ
j

τ(τ − 1)
− 2

(τ !)2
(

1 −
m
∑

j=1

pτ
j

)2

×
[

(2τ − 2)!
2−2τ +

∞
∑

j=0

(−1) j
∑m

k=1 p
τ+ j
k

1 −∑m
k=1 p

τ+ j
k

× (2τ + j − 2)!
j !

])

h

n
+ δ∗

C(n)n

−
(1 −∑m

j=1 p
τ
j

τ(τ − 1)h
+̂δ∗

C(n)

)2

n + o(n),
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where δ∗
C(·) and̂δ∗

C(·) are oscillating functions (possibly 0).
The number of τ -cousins follows a Gaussian law:

Yn,τ −
(1 −∑m

j=1 p
τ
j

τ(τ − 1)h
+ ξ∗

C(n)
)

n

(1 −∑m
j=1 p

τ
j

τ(τ − 1)h
+̂δ∗

C(n)
)√

n

D−→ N (0, 1).

The different τ -cousins are countable and can be enumerated appropriately. We can
call them K1, K2, . . ., etc. As a consequence of Theorem 2, the number of cousins
Xn,Ki , for i = 1, 2, . . ., together have an asymptotic multivariate distribution. For
instance for 3-cousins, with a binary alphabet, we can think of K2i−1 as being the
cousin with one right leaf, and a left path of length i then splitting into two leaves,
and take its mirror image as K2i . With an aperiodic binary alphabet, the multivariate
central limit theorem takes the form

⎛

⎜

⎝

Xn,K1

Xn,K2
...

⎞

⎟

⎠
−
⎛

⎜

⎝

p3q2

p2q3

...

⎞

⎟

⎠

n

6h

√
n

D−→ N2

⎛

⎜

⎝

⎛

⎜

⎝

0
0
...

⎞

⎟

⎠
,

⎛

⎜

⎝

σ 2
1,1 σ 2

1,2 · · ·
σ 2
1,2 σ 2

2,2 · · ·
...

...
. . .

⎞

⎟

⎠

⎞

⎟

⎠
,

where h = −p ln p − q ln q is the entropy of the alphabet, and σi, j , 1 ≤ i, j ≤ ∞,
are the linearity coefficients in the variances and covariances given in Theorem 1.
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